Greedy Algorithms

CS 498 SS
Saurabh Sinha
Chapter 5.5

A greedy approach to the motif finding problem

• Given t sequences of length n each, to find a profile matrix of length l.

• Enumerative approach $O(l \ n^t)$
 – Impractical

• Instead consider a more practical algorithm called “GREEDYMOTIFSEARCH”
Greedy Motif Search

• Find two closest l-mers in sequences 1 and 2 and form 2 x l alignment matrix with Score(s,2,DNA)
• At each of the following t-2 iterations, finds a “best” l-mer in sequence i from the perspective of the already constructed (i-1) x l alignment matrix for the first (i-1) sequences
• In other words, it finds an l-mer in sequence i maximizing

\[Score(s,i,DNA) \]

under the assumption that the first (i-1) l-mers have been already chosen
• Sacrifices optimal solution for speed: in fact the bulk of the time is actually spent locating the first 2 l-mers
Greedy Motif Search

pseudocode

- \(\text{GREEDYMOTIFSEARCH} (\text{DNA}, \ t, \ n, \ l) \)
- \(\text{bestMotif} := (1, \ldots, 1) \)
- \(\text{s} := (1, \ldots, 1) \)
- for \(s_1 = 1 \) to \(n-l+1 \)
 - for \(s_2 = 1 \) to \(n-l+1 \)
 - if (\(\text{Score}(s, 2, \text{DNA}) > \text{Score}(\text{bestMotif}, 2, \text{DNA}) \))
 - \(\text{bestMotif}_1 := s_1 \)
 - \(\text{bestMotif}_2 := s_2 \)
- \(s_1 := \text{bestMotif}_1 \); \(s_2 := \text{bestMotif}_2 \)
- for \(i = 3 \) to \(t \)
 - for \(s_i = 1 \) to \(n-l+1 \)
 - if (\(\text{Score}(s, i, \text{DNA}) > \text{Score}(\text{bestMotif}, i, \text{DNA}) \))
 - \(\text{bestMotif}_i := s_i \)
 - \(s_i := \text{bestMotif}_i \)
- Return \(\text{bestMotif} \)
A digression

• Score of a profile matrix looks only at the “majority” base in each column, not at the entire distribution

• The issue of non-uniform “background” frequencies of bases in the genome

• A better “score” of a profile matrix?
Information Content

• First convert a “profile matrix” to a “position weight matrix” or PWM
 – Convert frequencies to probabilities
• PWM W: $W_{\beta k} = \text{frequency of base } \beta \text{ at position } k$
• $q_\beta = \text{frequency of base } \beta \text{ by chance}$
• Information content of W:

$$\sum_{k} \sum_{\beta \in \{A,C,G,T\}} W_{\beta k} \log \frac{W_{\beta k}}{q_\beta}$$
Information Content

• If $W_{\beta k}$ is always equal to q_{β}, i.e., if W is similar to random sequence, information content of W is 0.
• If W is different from q, information content is high.
Greedy Motif Search

- Can be trivially modified to use “Information Content” as the score
- Use statistical criteria to evaluate significance of Information Content
- At each step, instead of choosing the top (1) partial motif, keep the top k partial motifs
 - “Beam search”
- The program “CONSENSUS” from Stormo lab.

- Further Reading: Hertz, Hartzell & Stormo, CABIOS (1990)
 http://bioinf.kvl.dk/~gorodkin/teach/bioinf2004/hertz90.pdf
Genome Rearrangements
Genome Rearrangements

- Most mouse genes have human orthologs (i.e., share common evolutionary ancestor)
- The sequence of genes in the mouse genome is not exactly the same as in human
- However, there are subsets of genes with preserved order between human-mouse (“in synteny”)
Genome Rearrangements

• The mouse genome can be cut into ~300 (not necessarily equal) pieces and joined pasted together in a different order (“rearranged”) to obtain the gene order of the human genome

• Synteny blocks

• Synteny blocks from different chromosomes in mouse are together on the same chromosome in human
Comparative Genomic Architectures: Mouse vs Human Genome

- Humans and mice have similar genomes, but their genes are ordered differently
- ~245 rearrangements
 - Reversals
 - Fusions
 - Fissions
 - Translocation
A type of rearrangement: Reversal
A type of rearrangement: Reversal

1, 2, 3, -8, -7, -6, -5, -4, 9, 10
The reversal introduced two breakpoints
Types of Rearrangements

Reversal

1 2 3 4 5 6 → 1 2 -5 -4 -3 6

Translocation

1 2 3
4 5 6

1 2 6
4 5 3

Fusion

1 2 3 4
5 6

1 2 3 4 5 6

Fission
Turnip vs Cabbage: Almost Identical mtDNA gene sequences

- In 1980s Jeffrey Palmer studied evolution of plant organelles by comparing mitochondrial genomes of the cabbage and turnip
- 99% similarity between genes
- These surprisingly identical gene sequences differed in gene order
- This study helped pave the way to analyzing genome rearrangements in molecular evolution
Transforming Cabbage into Turnip

B. oleracea (cabbage)

B. campestris (turnip)
Genome Rearrangement

• Consider reversals only.
 – These are most common

• How to transform one genome (i.e., gene ordering) to another, using the least number of reversals?
Reversals: Example

\[\pi = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \]

\[\rho(3,5) \]

\[1 \ 2 \ 5 \ 4 \ 3 \ 6 \ 7 \ 8 \]
Reversals: Example

\[\pi = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \]

\[\rho(3,5) \]

\[\rho(5,6) \]
Reversals and Gene Orders

- Gene order is represented by a permutation π:

\[\pi = \pi_1 \ldots \pi_{i-1} \pi_i \pi_{i+1} \ldots \pi_{j-1} \pi_j \pi_{j+1} \ldots \pi_n \]

- Reversal $\rho(i,j)$ reverses (flips) the elements from i to j in π.
Reversal Distance Problem

- **Goal**: Given two permutations, find the shortest series of reversals that transforms one into another

- **Input**: Permutations π and σ

- **Output**: A series of reversals $\rho_1, \ldots \rho_t$ transforming π into σ, such that t is minimum

- t - reversal distance between π and σ
Sorting By Reversals Problem

• **Goal:** Given a permutation, find a shortest series of reversals that transforms it into the identity permutation \((1 \ 2 \ \ldots \ \ n)\)

• **Input:** Permutation \(\pi\)

• **Output:** A series of reversals \(\rho_1, \ \ldots \ \rho_t\) transforming \(\pi\) into the identity permutation such that \(t\) is minimum
Sorting By Reversals: A Greedy Algorithm

• If sorting permutation $\pi = 1\ 2\ 3\ 6\ 4\ 5$, the first three elements are already in order so it does not make any sense to break them.
• The length of the already sorted prefix of π is denoted $\text{prefix}(\pi)$
 – $\text{prefix}(\pi) = 3$
• This results in an idea for a greedy algorithm: increase $\text{prefix}(\pi)$ at every step
Greedy Algorithm: An Example

- Doing so, π can be sorted

\[\begin{align*}
1 & \, 2 \, 3 \, 6 \, 4 \, 5 \\
1 & \, 2 \, 3 \, 4 \, 6 \, 5 \\
1 & \, 2 \, 3 \, 4 \, 5 \, 6
\end{align*} \]

- Number of steps to sort permutation of length n is at most $(n - 1)$
Greedy Algorithm: Pseudocode

\textbf{SimpleReversalSort}(\pi)

\begin{enumerate}
\item \textbf{for} \ i \leftarrow 1 \text{ to } n - 1
\item \ j \leftarrow \text{position of element } i \text{ in } \pi \ (i.e., \ \pi_j = i)
\item \ \textbf{if} \ j \neq i
\item \ \pi \leftarrow \pi \ast \rho(i, j)
\item \ \textbf{output} \ \pi
\item \ \textbf{if} \ \pi \text{ is the identity permutation}
\item \ \textbf{return}
\end{enumerate}
Analyzing SimpleReversalSort

• SimpleReversalSort does not guarantee the smallest number of reversals and takes five steps on \(\pi = 6 \ 1 \ 2 \ 3 \ 4 \ 5 \):

 • Step 1: 1 6 2 3 4 5
 • Step 2: 1 2 6 3 4 5
 • Step 3: 1 2 3 6 4 5
 • Step 4: 1 2 3 4 6 5
 • Step 5: 1 2 3 4 5 6
But it can be sorted in two steps:

\[\pi = 6 \ 1 \ 2 \ 3 \ 4 \ 5 \]

- Step 1: 5 4 3 2 1 6
- Step 2: 1 2 3 4 5 6

So, SimpleReversalSort(\(\pi\)) is not optimal

Optimal algorithms are unknown for many problems; approximation algorithms are used
Approximation Algorithms

• These algorithms find approximate solutions rather than optimal solutions
• The approximation ratio of an algorithm A on input π is:

$$\frac{A(\pi)}{OPT(\pi)}$$

where

$A(\pi)$ - solution produced by algorithm A

$OPT(\pi)$ - optimal solution of the problem
Approximation Ratio/Performance Guarantee

• Approximation ratio (performance guarantee) of algorithm A: max approximation ratio of all inputs of size n

• For algorithm A that minimizes objective function (minimization algorithm):
 • $\max_{|\pi| = n} A(\pi) / \text{OPT}(\pi)$

• For maximization algorithm:
 • $\min_{|\pi| = n} A(\pi) / \text{OPT}(\pi)$
Adjacencies and Breakpoints

\[\pi = \pi_1\pi_2\pi_3 \ldots \pi_{n-1}\pi_n \]

• A pair of elements \(\pi_i \) and \(\pi_{i+1} \) are adjacent if

\[\pi_{i+1} = \pi_i \pm 1 \]

• For example:

\[\pi = 1 \ 9 \ 3 \ 4 \ 7 \ 8 \ 2 \ 6 \ 5 \]

• (3, 4) or (7, 8) and (6,5) are adjacent pairs
Breakpoints: An Example

There is a breakpoint between any pair of adjacent elements that are non-consecutive:

\[\pi = 1 \ | \ 9 \ | \ 3 \ | \ 4 \ | \ 7 \ | \ 8 \ | \ 2 \ | \ 6 \ | \ 5 \]

- Pairs (1,9), (9,3), (4,7), (8,2) and (2,6) form breakpoints of permutation \(\pi \)
- \(b(\pi) \) - # breakpoints in permutation \(\pi \)
Adjacency & Breakpoints

• An **adjacency** - a pair of adjacent elements that are **consecutive**

• A **breakpoint** - a pair of adjacent elements that are **not consecutive**

\[
\pi = 5 \ 6 \ 2 \ 1 \ 3 \ 4 \quad \rightarrow \quad \text{Extend } \pi \text{ with } \pi_0 = 0 \text{ and } \pi_7 = 7
\]

$0 \ 5 \ 6 \ 2 \ 1 \ 3 \ 4 \ 7$

adjacencies

breakpoints
Reversal Distance and Breakpoints

- Each reversal eliminates at most 2 breakpoints.

\[\pi = 2 \ 3 \ 1 \ 4 \ 6 \ 5 \]

<table>
<thead>
<tr>
<th>0</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>4</th>
<th>6</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>b(\pi) = 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>3</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>b(\pi) = 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>b(\pi) = 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>b(\pi) = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reversal Distance and Breakpoints

- Each reversal eliminates at most 2 breakpoints.

\[\text{reversal distance} \geq \frac{\#\text{breakpoints}}{2} \]

\[\pi = 2 \ 3 \ 1 \ 4 \ 6 \ 5 \]

\[b(\pi) = 5 \]

\[\pi = 2 \ 3 \ 1 \ 4 \ 6 \ 5 \]

\[b(\pi) = 4 \]

\[\pi = 2 \ 3 \ 1 \ 4 \ 6 \ 5 \]

\[b(\pi) = 2 \]

\[\pi = 2 \ 3 \ 1 \ 4 \ 6 \ 5 \]

\[b(\pi) = 0 \]
Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(π)

1 while $b(\pi) > 0$
2 Among all possible reversals, choose reversal ρ minimizing $b(\pi \cdot \rho)$
3 $\pi \leftarrow \pi \cdot \rho(i, j)$
4 output π
5 return
Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(\(\pi\))

1. while \(b(\pi) > 0\)
2. Among all possible reversals, choose reversal \(\rho\) minimizing \(b(\pi \cdot \rho)\)
3. \(\pi \leftarrow \pi \cdot \rho(i, j)\)
4. output \(\pi\)
5. return
Thoughts on BreakPointReversalsSort

- A “different face of greed”: breakpoints as the marker of progress
- Why is this algorithm better than SimpleReversalSort? Don’t know how many steps it may take
- Does this algorithm even terminate?
- We need some analysis …
Strips

- **Strip**: an interval between two consecutive breakpoints in a permutation
 - **Decreasing strip**: strip of elements in decreasing order
 - **Increasing strip**: strip of elements in increasing order

A single-element strip can be declared either increasing or decreasing. We will choose to declare them as decreasing with exception of the strips with 0 and \(n+1 \)
Reducing the Number of Breakpoints

Theorem 1:

If permutation π contains at least one decreasing strip, then there exists a reversal ρ which decreases the number of breakpoints (i.e. $b(\pi \cdot \rho) < b(\pi)$)

Things To Consider

• For $\pi = 1 \ 4 \ 6 \ 5 \ 7 \ 8 \ 3 \ 2$

\[
0 \ 1 | 4 | 6 \ 5 | 7 \ 8 | 3 \ 2 | 9 \quad b(\pi) = 5
\]

– Choose decreasing strip with the smallest element k in π ($k = 2$ in this case)
Things To Consider

- For $\pi = 1 \ 4 \ 6 \ 5 \ 7 \ 8 \ 3 \ 2$

 $0 \ 1 \ | \ 4 \ | \ 6 \ 5 \ | \ 7 \ 8 \ | \ 3 \ 2 \ | \ 9 \quad b(\pi) = 5$

 - Choose decreasing strip with the smallest element k in π ($k = 2$ in this case)
Things To Consider

• For $\pi = 1 \ 4 \ 6 \ 5 \ 7 \ 8 \ 3 \ 2$

 $0 \ 1 \ 4 \ 6 \ 5 \ 7 \ 8 \ 3 \ 2 \ 9 \quad b(\pi) = 5$

 – Choose decreasing strip with the smallest element k in π ($k = 2$ in this case)

 – Find $k - 1$ in the permutation
Things To Consider

- For $\pi = 1 \ 4 \ 6 \ 5 \ 7 \ 8 \ 3 \ 2$

 \[
 \begin{array}{c|c|c|c|c|c|c|c|c|c
 \end{array}
 \]

 $0 \ 1 \ 4 \ 6 \ 5 \ 7 \ 8 \ 3 \ 2 \ 9$
 $b(\pi) = 5$

 - Choose decreasing strip with the smallest element k in π ($k = 2$ in this case)

 - Find $k − 1$ in the permutation

 - Reverse the segment between k and $k-1$:

 $0 \ 1 \ 4 \ 6 \ 5 \ 7 \ 8 \ 3 \ 2 \ 9$
 $b(\pi) = 5$

 $0 \ 1 \ 2 \ 3 \ 8 \ 7 \ 5 \ 6 \ 4 \ 9$
 $b(\pi) = 4$
Reducing the Number of Breakpoints (Again)

– If there is no decreasing strip, there may be no reversal ρ that reduces the number of breakpoints (i.e. $b(\pi \cdot \rho) \geq b(\pi)$ for any reversal ρ).

– By reversing an increasing strip (# of breakpoints stay unchanged), we will create a decreasing strip at the next step. Then the number of breakpoints will be reduced in the next step (theorem 1).
ImprovedBreakpointReversalSort

1 \textbf{while} \ b(\pi) > 0
2 \quad \mathbf{if} \ \pi \ \text{has a decreasing strip}
3 \quad \quad \text{Among all possible reversals, choose reversal } \rho
4 \quad \quad \quad \text{that minimizes } b(\pi \cdot \rho)
5 \quad \mathbf{else}
6 \quad \quad \text{Choose a reversal } \rho \text{ that flips an increasing strip in } \pi
7 \quad \pi \leftarrow \pi \cdot \rho
8 \textbf{return } \pi
ImprovedBreakpointReversalSort: Performance Guarantee

- ImprovedBreakPointReversalSort is an approximation algorithm with a performance guarantee of at most 4
 - It eliminates at least one breakpoint in every two steps; at most $2b(\pi)$ steps
 - Approximation ratio: $2b(\pi) / d(\pi)$
 - Optimal algorithm eliminates at most 2 breakpoints in every step: $d(\pi) \geq b(\pi) / 2$
 - Performance guarantee:
 - $(2b(\pi) / d(\pi)) \geq [2b(\pi) / (b(\pi) / 2)] = 4$